

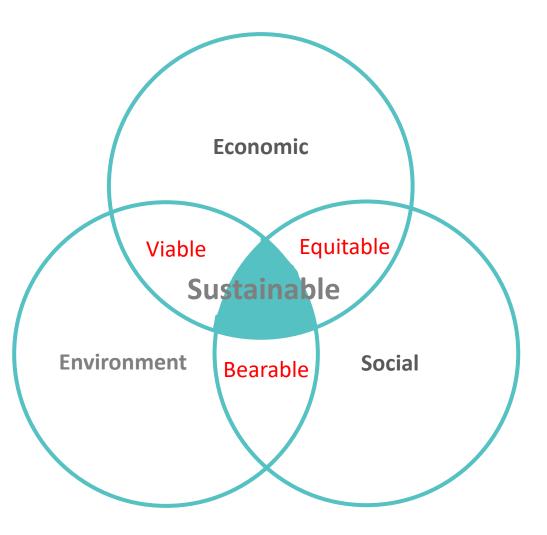
The Circular Economy and future design: Shifting business perspectives: connecting solar shading with life cycle thinking

Deborah Andrews

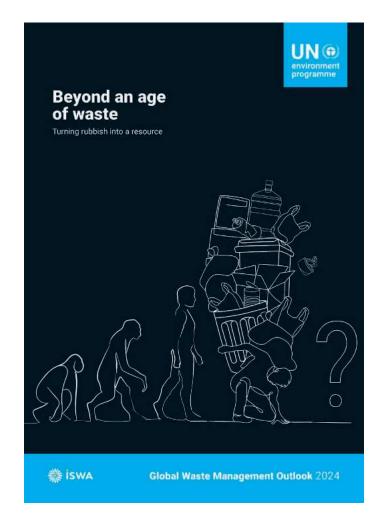
Professor of Design for Sustainability & Circularity School of Engineering London South Bank University

Sustainable development: meeting the needs of the present generation without compromising the ability of future generations to meet their own needs

Bruntland Report, 1987



Sustainable development: meeting the needs of the present generation without compromising the ability of future generations to meet their own needs


Bruntland Report, 1987

why circularity?

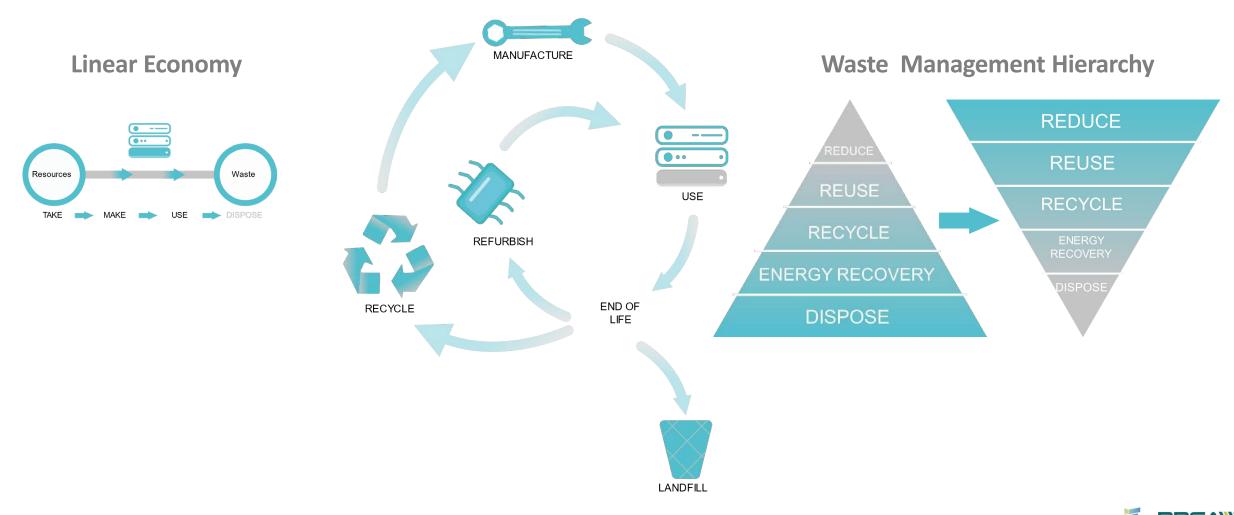
Municipal waste –

2023 - 2.1 billion tons / year on trucks circumnavigates globe x 24 disposal - 99% of 'stuff' within 6 months (developed world) 2050 - 3.2 billion tons / year

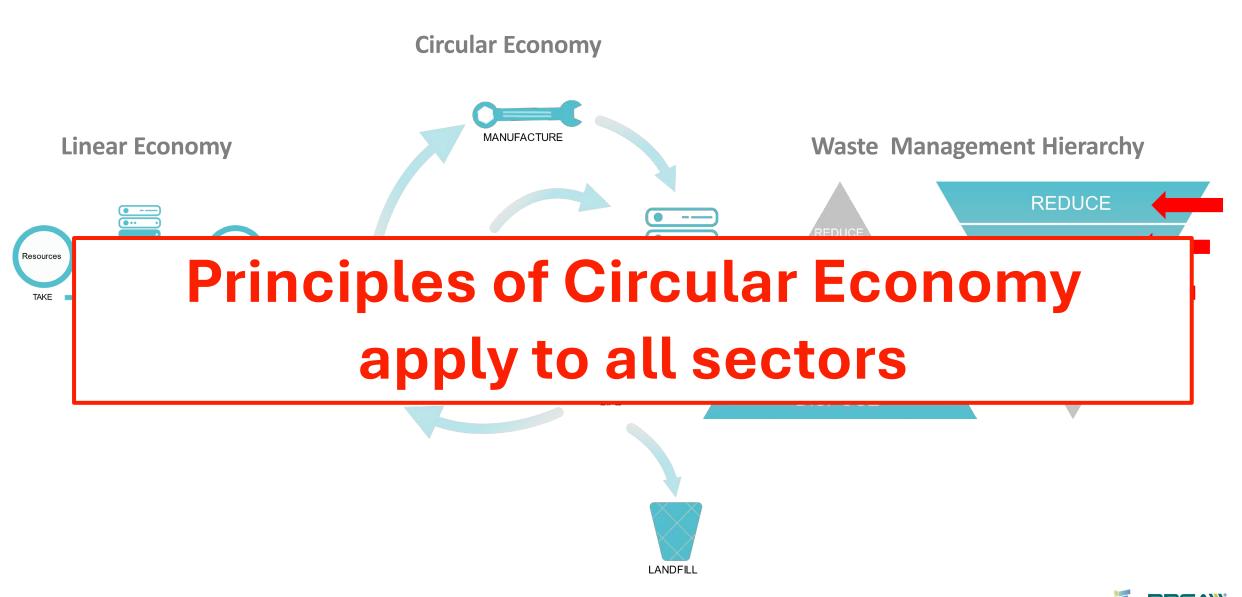
Construction / Demolition waste – 2025 – 2.2 billion tons / year 40% GHG emissions

E-waste – 2023 – 62 million tonnes / year 2030 – 80 million tonnes / year

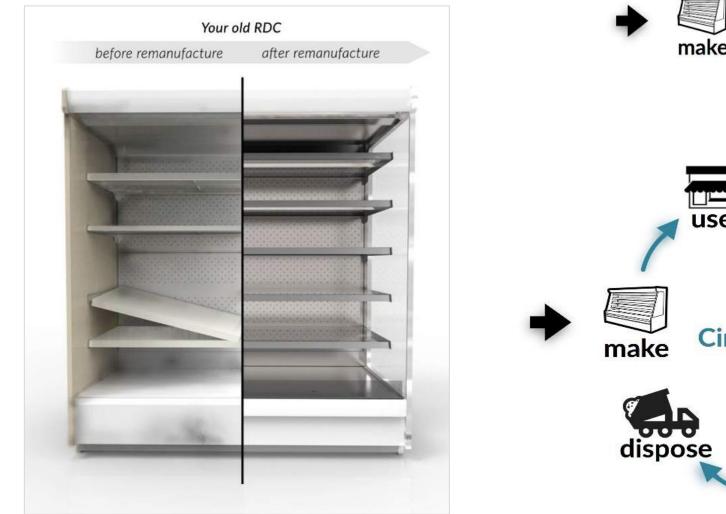
Unsustainable – environment / economics / social

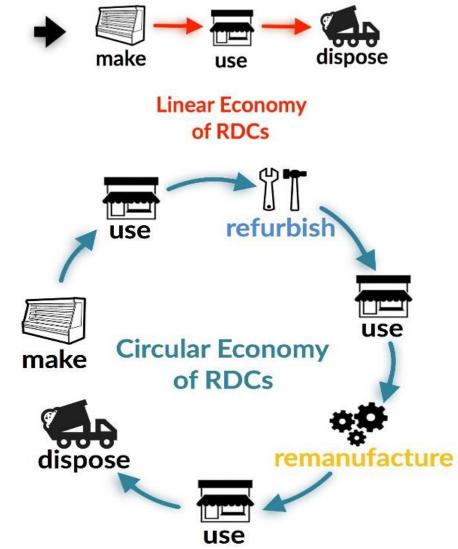

https://www.unep.org/resources/global-waste-management-outlook-2024

Why circularity?


Circular Economy

ES-SO


Why circularity?



Case study – user behaviour / perception Commercial refrigeration sector – reuse / second-life market

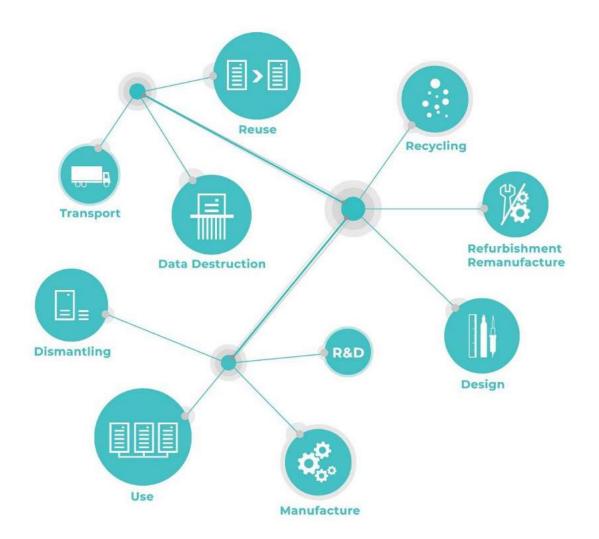
Case study – user behaviour / perception Significant challenge to second-life market

User behaviour

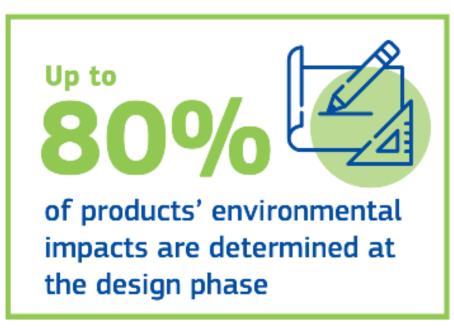
Supporting Resource Efficiency Based on proven practice in healthcare Pro-Circular Behaviour Change Tool

Impact

Increased sale of remanufactured RDCs in major international supermarket chain -Economic benefit to customers Significant environmental impact saving



Case study – Whole Systems Thinking / Approach CEDaCI – A Circular Economy for the Data Centre Industry


Primary source data collection – reverse engineering – materials composition approx 30 servers, switches, load bank, routers

Whole systems / Life Cycle Thinking approachProduct life extension – reuse / remanufactureREACTIVEEnd-of-life – recyclingREACTIVEBeginning of life - Design for circularityPROACTIVE

Empirical evidence?

Decisions made during [the design] stage profoundly influence the entire life cycle of the product and determine 80 to 90 percent of its total life-cycle costs.

Graedel, T. E., Comrie, P. R. and Sekutowski, J. C. (1995) 'Green Product Design', *AT&T Technical Journal*, 74(6), pp. 17–25. doi: 10.1002/j.1538-7305.1995.tb00262.x.

Deborah Andrews, 07.11.2024

Case study - Design for circularity

CEDaCl circular server – prototype

Modular platform format Consistent component configuration Easy / rapid disassembly Reduced overall mass by 33% Reduced number of components by 50%+ Reduced mass of plastics by 90%

Open access publication on OCP Platform

COMMUNITY®

https://www.open compute.org/about

Case study – electrical / electronics – incomplete system E-waste – fastest growing global waste stream < 20% formally collected / recycling & reclamation rates unknown

Critical Raw Materials – materials of high technical and economic importance

China

Si 66%

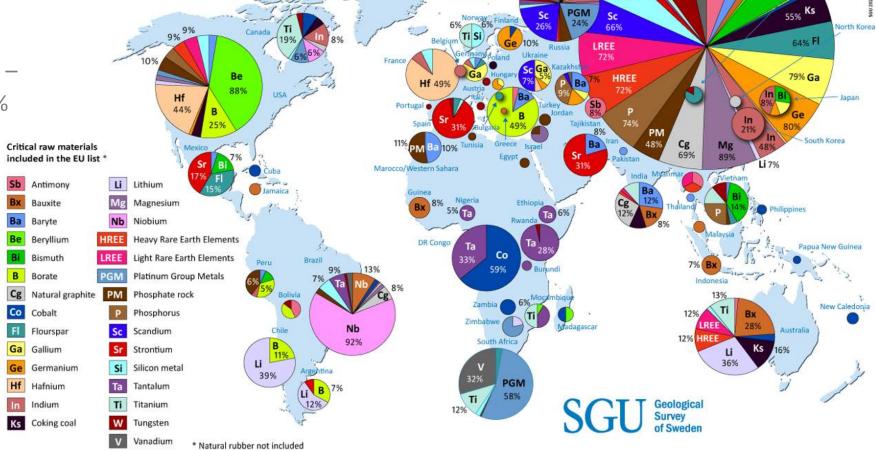
Sc

Sc

82%

8%

Mongolia

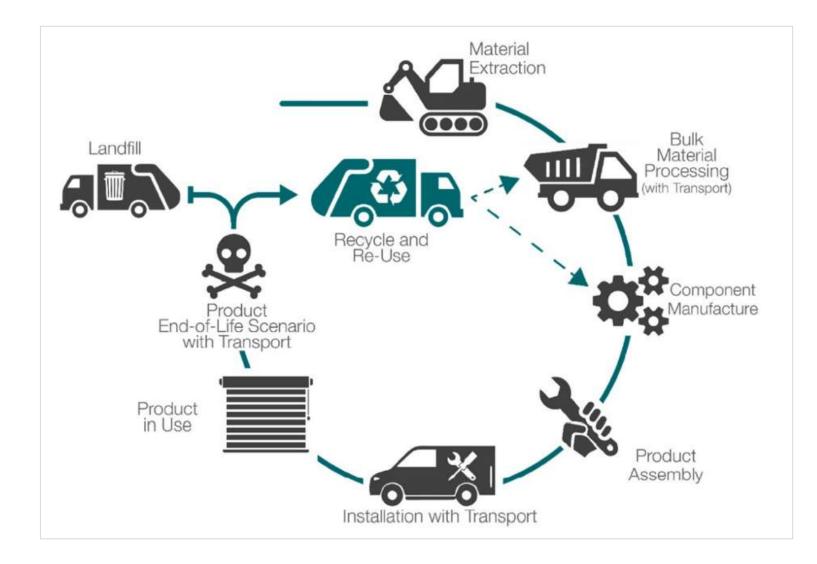

Co 7%

Sb Ba

74%

CRM because Geopolitical location Unmined reserves Current recycling rates – very poor – average 1%

Substitution?


Materials composition typical server

Currently recycled Critical Raw Materials Others

Elements	CRM	Chassis & Screws	Fan	CPU	RAM	МВ	РСВ	PSU	Either	·/or
									HDD	SSD
Ag					Х	Х	Х	Х	Х	X
Al		X	X	X	X	X	X	X	X	X
Au				X	X	Χ	X	X		X
Ва				X	Х	Х	Х	Х	Х	X
Са				Х	Х	Х	Х	Х	Х	X
Со	X			X	Х	Х	X	X	Х	X
Cr				Х	Х	Х	Х	Х	Х	X
Cu				X	X	X	X	X	X	X
Dy	X			X	Х	Х	X	X	X	X
Fe		X	X	X	X	X	X	X	X	X
In	X								Х	
Mg	X			X	Х	Х	X	X	Х	X
Mn				Х	Х	Х	Х	Х	Х	
Мо				Х					Х	
Nd	X				Х			X	X	
Ni				Х	Х	Х	Х	Х	Х	X
Pb					Х	Х		Х	Х	X
Pr	X								Х	
Sb	X					Х		X		X
Si	X			X	Х	Х	X	X	X	X
Sn				Х	Х	Х	Х	Х	Х	X
Sr	X			X	Х	Х	X	X	Х	X
Та	X							X		
Ti	X			X	Х	Х	X	X	Х	X
W	X						X	Х	X	X
Zn				Х	Х	Х	Х	Х	Х	Х
Zr				Х	Х	Х	Х	Х	Х	Х

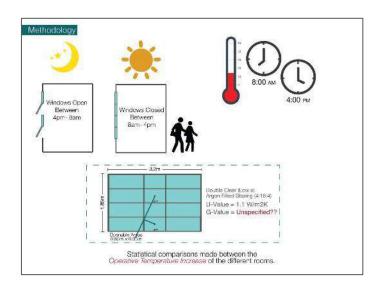
Life Cycle Thinking and Solar Shading

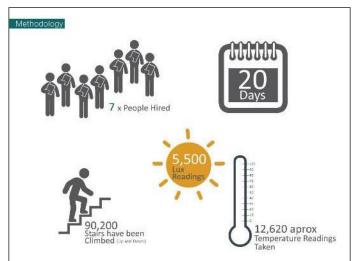
Deborah Andrews, 07.11.2024

BBSA-LSBU funded PhD

Scientific evidence - environmental, social & economic benefits of shading products

Shading products industry Reducing thermal gain / over-heating

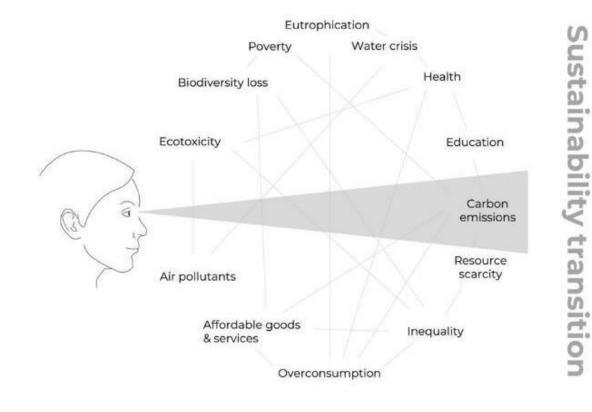




Original Specified Aluminium Venetian Blind

Open Blind Room

Shading products industry Reducing thermal gain / over-heating


Original Specified Aluminium Venetian Blind Open Blind Room

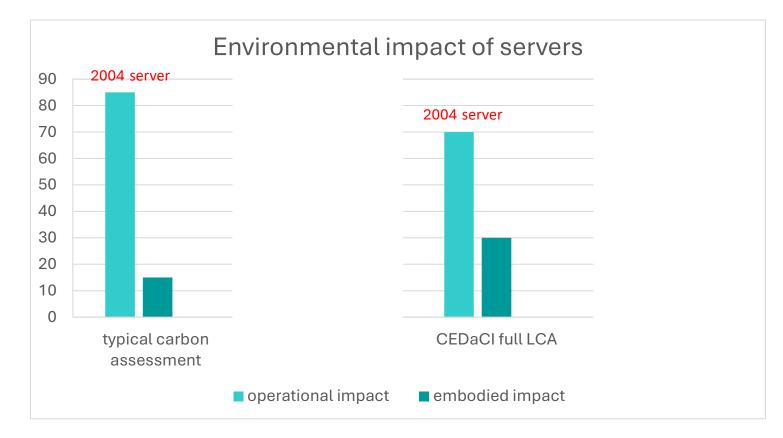
Carbon assessment – inaccurate – at best indicative

Life Cycle Assessment – considerably more accurate – used to assess benefits of solar shading

Graphic by Jan Konietzko

Comprehensive Life Cycle Assessment includes

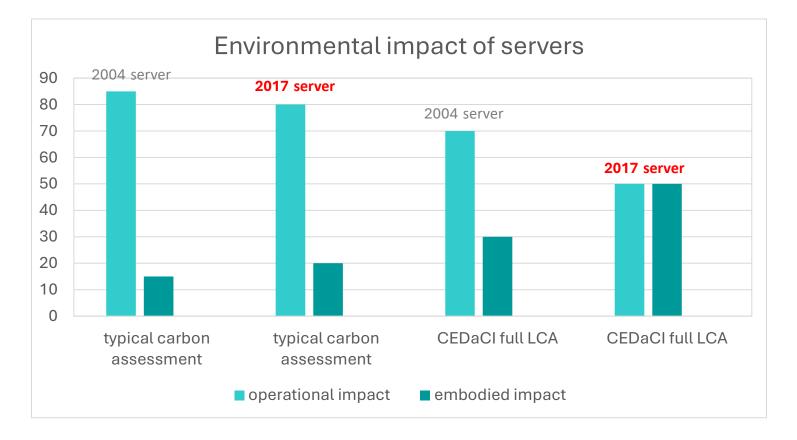
- 1. Climate change
- 2. Resource depletion (fresh water)
- 3. Human toxicity
- 4. Abiotic resource depletion
- 5. Fossil fuel resource depletion
- 6. Eutrophication
- 7. Acidification earth and oceans
- 8. Ozone layer depletion
- 9. Ionizing radiation
- 10. Particulate matter
- 11. Land and land use change



Carbon assessment – inaccurate – at best indicative

Life Cycle Assessment – considerably more accurate – used to assess benefits of solar shading

Comparing carbon assessments with preliminary LCA results – indicate much higher embodied impact



Carbon assessment – inaccurate – at best indicative

Life Cycle Assessment – considerably more accurate – used to assess benefits of solar shading

Comparing carbon assessments with preliminary LCA results – indicate much higher embodied impact

Assessing overall – operational + embodied - impacts of shading products

Manual roller – internal

Manual venetian – internal & external

Motorised - internal

Automated- external

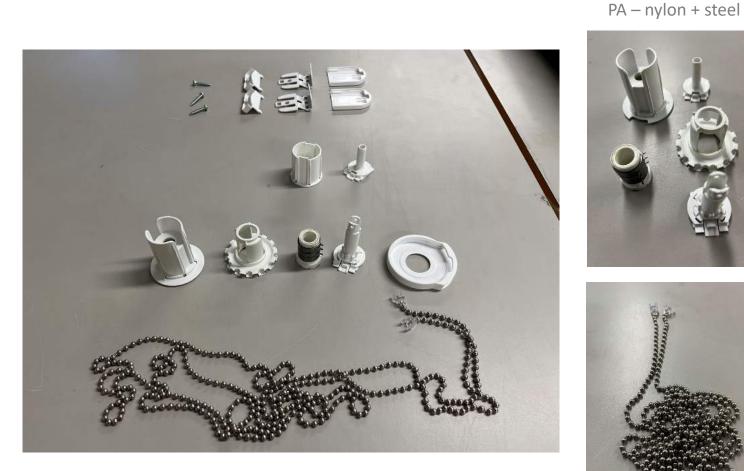
	Operational Annual Heating Energy Savings*	Control System	End-of-life Scenario	Operational and Embodied Environment Savings Product Lifetime (Years)				
0				3	5	10	15	20
	5%		Recycle	2.51%	3.13%	3.88%	4.13%	4.25%
8//		Manual	Landfill	-1.48%	-0.71%	1.24%	1.89%	2.21%
		Internal Motorised	Recycle	1.70%	2.53%	3.52%	3.85%	4.02%
385 /			Landfill	-2.88%	-1.78%	0.59%	1.37%	1.77%
9		External	Recycle	-3.91%	-0.46%	2.21%	3.10%	3.55%
			Landfill	-12.95%	-6.00%	-0.62%	1.18%	2.08%
		Internal	Recycle	7.51%	8.13%	8.88%	9.13%	9.25%
		Manual	Landfill	3.52%	4.29%	6.24%	6.89%	7.21%
	10%	Internal Motorised	Recycle	6.70%	7.53%	8.52%	8.85%	9.02%
· · ·			Landfill	2.12%	3.22%	5.59%	6.37%	6.77%
		External Automated	Recycle	1.09%	4.54%	7.21%	8.10%	8.55%
- 2			Landfill	-7.95%	-1.00%	4.38%	6.18%	7.08%
¥	15%	Internal Manual	Recycle	12.51%	13.13%	13.88%	14.13%	14.25%
+			Landfill	8.52%	9.29%	11.24%	11.89%	12.21%
		Internal Motorised	Recycle	11.70%	12.53%	13.52%	13.85%	14.029
			Landfill	7.12%	8.22%	10 <mark>.59</mark> %	11.37%	11.779
		External Automated	Recycle	6.09%	9.54%	12.21%	13.10%	13.55%
*			Landfill	-2.95%	4.00%	9.38%	11.18%	12.08%
	20%		Recycle	17.51%	18.13%	18.88%	19.13%	19.25%
			Landfill	<mark>13</mark> .52%	14.29%	16.24%	16.89%	17.219
400		Internal Motorised	Recycle	16.70%	17.53%	18.52%	18.85%	19.02%
•			Landfill	12.12%	13.22%	15.59%	16.37%	16.77%
		External Automated	Recycle	11.09%	14.54%	17.21%	18.10%	18.55%
111			Landfill	2.05%	9.00%	14.38%	16.18%	17.08%

* Total Heating Energy = 6,690 kWh/yr ≡ 205 mPt/yr.

having blinds.

Deborah Andrews, 07.11.2024

Materials composition – typical motorised / automated shading products


Currently recycled Critical Raw Materials Others

Elements	CRM	Brackets & Screws	Motor	РСВ	D Cell Batteries	Li batteries	
Ag				Х			
Al		X	Х	Х			
Au				Х			
Ва				Х			
С					X	Х	
Са				Х			
Со	X			Х		Х	
Cr				Х			
Cu			X	Х			
Dy	X			Х			
Fe		X	X	Х	X		
К					X		
Li	X					Х	
Mg	X			Х	X	Х	
Mn				Х			
Ni				Х			
Si	X			X			
Sn				Х			
Sr	X			Х			
Ti	X			X			
W	X			X			
Zn				Х	Х		
Zr				Х			

Mechanism design – contemporary Roman blind

Component assemblies – mixed materials

PC fastener / coated steel chain

POM

ABS

Assembly / disassembly

Acrylic painted steel brackets

Solar shading – materials composition

Annual textile production in EU –

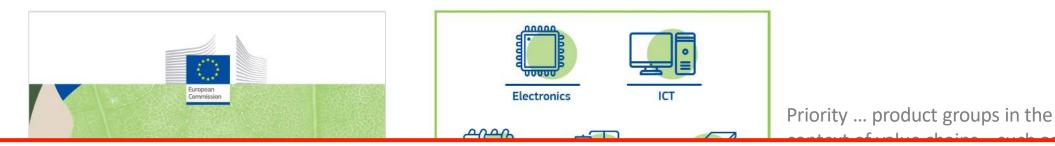
175m tonnes primary raw material, millions litres water and chemicals

Shading products - woods, metals and plastics and

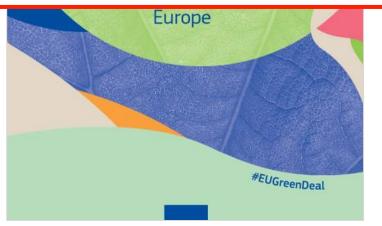
Textiles – some 100% natural / most mixed natural & synthetic fibres, coatings and laminated layers

End-of life -

1% of textiles - new products, some are downcycled, 87% sent to landfill/incinerated along with other components


Urgent need to increase resource efficiency by extending product life through repair, reuse, remanufacture

Increase recycling at end of life



UK Government Circular Economy Package EU / UK Guidelines changing to legislation

4 million jobs

linked to the circular economy in the EU 2012 – 2018 5% increase in CE linked jobs

Deborah Andrews, 07.11.2024

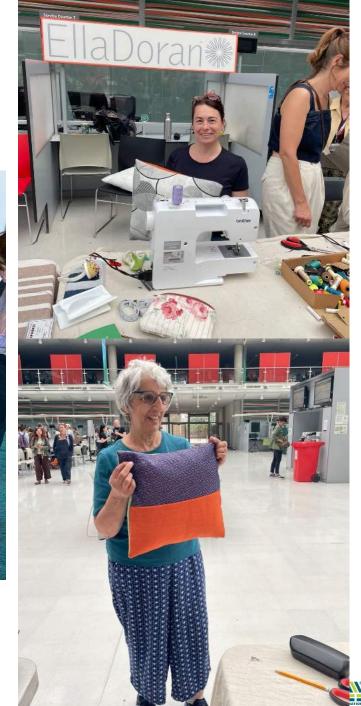
Design for Circularity / Eco-design is not an option

Regulation (EU) 2024/1781 of the European Parliament and of the Council of 13 June 2024 establishing a framework for the setting of **ecodesign requirements for sustainable products**, amending Directive (EU) 2020/1828 and Regulation (EU) 2023/1542 and repealing Directive 2009/125/EC Designs must

- use less energy
- last longer
- can be easily repaired
- parts can be easily disassembled and put to further use
- contain fewer substances of concern
- can be easily recycled
- contain more recycled content
- have a lower carbon and environmental footprint over its lifecycle

Also consider

- WEEE regulations
- producer responsibility regulations
- Scope 1, 2 and 3 carbon emissions
- EPDs
- On going research BBSA glazing data, + shading / U-tot values

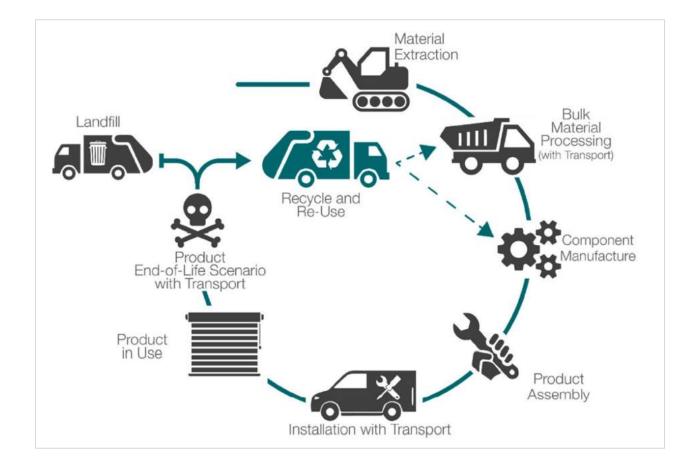


Simple start - Circular Economy for SMEs participatory research – focus on reuse of textiles


Deborah Andrews, 07.11.2024

Conclusion and recommendations

- Potential for circularity exists
- Urgent need to consider **design**
- Assess and compare impacts and benefits of different materials – operational benefits + embodied impacts textiles – natural vs synthetic
 - mono-materials vs composites & laminates
- Can changes increase recycling?
- Design for disassembly as well as assembly
- Increase component reuse and remanufacture
- Increase recycling of textiles, slats etc, manual mechanisms
- Assess user behaviour drivers for change
- Strategies to increase take-back manufacturer responsibility – legislation?



Thank you for listening Any questions?

deborah.andrews@lsbu.ac.uk

